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Abstract

We introduce a task consisting in matching a proof to a given mathematical statement.

The task fits well within current research on Mathematical Information Retrieval and,

more generally, mathematical article analysis (Mathematical Sciences, 2014). We re-

lease a dataset for the task (the MATcH dataset), consisting of over 180k statement-

proof pairs extracted from mathematical research articles. We propose a bilinear sim-

ilarity model and two decoding methods to match statements to proofs effectively.

While the first decoding method matches a proof to a statement without being aware

of other statements or proofs, the second method treats the task as a global matching

problem. Through a symbol replacement procedure, we analyze the “insights” that

pre-trained language models have in such mathematical article analysis and show that

while these models perform well on this task with the best performing mean recipro-

cal rank of 73.7, they follow a relatively shallow symbolic analysis and matching to

achieve that performance.
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Chapter 1

Introduction

Research-level mathematical discourse is a challenging domain for Natural Language

Processing (NLP). Mathematical articles switch frequently between natural language

and mathematical formulae, and a semantic analysis of mathematical text needs to

solve relationships (e.g. coreference) between mathematical symbols and concepts.

Moreover, mathematical writing follows many conventions, such as variable naming

or typography, that are implicit, and may differ between subfields. Researchers have

proposed methods to solve some related tasks, most of which have not yet reach to

human-level performance (Meadows and Freitas, 2022).

However, mathematical research can benefit from NLP (Mathematical Sciences,

2014), in particular as concerns bibliographical research: researchers need tools to

find work relevant for their research. Indeed, prior NLP work on mathematical research

articles focused on Mathematical Information Retrieval (MIR) and related tools or data

(Zanibbi et al., 2016; Stathopoulos and Teufel, 2016, 2015). Figure 1.1 illustrates a

simple example of MIR. By entering a mathematical formula as the query, the system

should help search for the concept, object or result (Sakai et al., 2021).

Mathematical Information Retrieval has attracted more attention in recent years.

The National Center for Science Information Systems (NTCIR), the first large-scale

conference for information retrieval (IR), noticed the importance of math in technical

documents, and the weakness of most search engines which do not support user to

search for mathematical formulae in the target documents. They designed a series of

NTCIR Math tasks (Zanibbi et al., 2016) and constructed the test collections, which

proposed an evaluation framework of mathematical information retrieval.

This thesis introduces a more specific task of MIR aimed at improving the process-

ing of research-level mathematical articles and make a step towards the modelling of

1



Chapter 1. Introduction 2

mathematical reasoning. We construct a dataset for the task (MATcH) and an encoder-

decoder (Cho et al., 2014) based method to match statements to proofs effectively. We

also focus on the insight of the statement-proof matching models to explore how de-

cisions are made when judging if a proof match to the statement. Our analysis shows

that pre-trained language models do not obtain significant “mathematical insight” for

performing this matching, but rather rely on shallow matching. However, this does not

prevent them from performing the matching relatively well in several carefully crafted

scenarios.

The aim of this project is to publish a more professional MIR dataset and task

for future research and also let the models consider a more realistic scenario of how

people use MIR technique to look up information they need. This work is based on our

ongoing submission of Empirical Methods in Natural Language Processing (EMNLP)

2022 conference1. It is related to the previous work of Coavoux and Cohen (2021).

They constructed the first version of dataset and proposed the model architecture. We

use the same technique to construct our dataset and replace their encoder by more

powerful pretrained language models for our experiments.

Figure 1.1: A simple example of MIR. The left-hand-side formula is the query and the

right-hand-side text is the result retrieved from the system which explains the query

formula (Dadure et al., 2021a).

1.1 Motivation

There are multiple motivations for the design of the task and our dataset. We believe

it may help MIR by serving as a proxy for the search for the existence of a mathe-

matical result, or for statements and proofs related to one another (e.g. using the same

proof technique), an important search tool for any digital mathematical library (Math-

ematical Sciences, 2014). Learning to match statements and proofs would also benefit
1https://2022.emnlp.org/
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computer-assisted theorem proving, as it is akin to tasks such as premise selection, also

recently addressed with NLP methods (Piotrowski and Urban, 2019).

Existing datasets such as LEANSTEP (Han et al., 2021) and the synthetic dataset of

Polu and Sutskever (2020) do not include natural language. Figure 1.2 and Figure 1.3

respectively demonstrate the datapoint in the LEANSTEP and synthetic dataset. It is not

reasonable to expect all the users to have the prior knowledge for reading and writing

the statements and proofs in these two special formats. Figure 1.4 shows an example

data from our dataset. It is written in natural language, which matches how people do

web search via search engines. NaturalProofs (Welleck et al., 2021), another related

dataset, only consists of 32k theorem-proof pairs from ProofWiki2, some sub-topics

in algebraic geometry and two textbooks. Our dataset is over five times larger and

contains pairs extracted from professional mathematical papers.

lemma peirce_identity {P Q :Prop} : ((P → Q) → P) → P :=

begin

apply or.elim (em P),

intros h _,

exact h,

tauto!

end

Figure 1.2: Example data from LEANSTEP, namely the proof of the Peirce identity (Han

et al., 2021). The data is written in the format which LEAN can understand. LEAN is an

open-source theorem prover proposed by de Moura et al. (2015). The system requires

fully specified, type-correct expressions as the input. Users have to manually translate

the mathematical statements to this format. Otherwise, LEAN will not be able to process

the input properly. Also, users need to learn the format in order to understand the proof

given by the prover.

1.2 Contributions

The contributions of this thesis are summarized as follows:
2https://proofwiki.org/xmldump/latest.xml
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{

"proof_label": "unidmrn",

"goal": "[[ ]] |- U. U. ‘’ A = ( dom A u. ran A )",

"proof_step": "[[ |- A = B |- C = B ]] |- A = C \\

{{ A : U. U. ‘’ A }} \\

{{ B : ( ran ‘’ A u. dom ‘’ A ) }} \\

{{ C : ( dom A u. ran A ) }}",

"proof_step_hash": "37yZVNorgF8=",

"parent_hash": ["n4Kl7judEN4="]

}

Figure 1.3: Example data from the synthetic dataset of Polu and Sutskever (2020). The

dataset is in Metamath (Megill, 1969) environment, a tiny language that can express

theorems in abstract mathematics, accompanied by proofs that can be verified by a

computer program. The dataset is in tree structure. Every statement has a proof tree

and each datapoint is a node on one of the proof trees, representing a step of proof.

proof label indicates which statement the proof step belongs to. goal is the target

this specific proof step needs to achieve. parent hash tells the parent goal if any.

By collecting all the proof steps with the same proof label, we can recover the tree

structure of the proof.

• We introduce the MATcH task aimed at improving the MIR research. It is a

practical scenario for many mathematical researchers and students for learning

purpose.

• We construct and release a dataset for the task (MATcH) from over 439k pro-

fessional articles in the MREC corpus3 (Lı́ška et al., 2011). The dataset consists

of over 180k statement-proof pairs, which is one of the largest profession-level

mathematical statement-proof datasets.

• We provide results on our proposed task with an array of neural models, aimed at

scoring the likelihood of relationship between a statement and its proof. We also

provide an analysis of our models through the symbol replacement procedure.

• We provide two methods for decoding, one is local decoding, matching a proof

3https://mir.fi.muni.cz/MREC/, version 2011.4.439.

https://mir.fi.muni.cz/MREC/
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Theorem 1.3. Suppose that |Sing(S)|< (2r−1)r. Then X is factorial.

Proof. The subset Sing(S) ⊂ P3 is a set-theoretic intersection of surfaces of

degree 2r−1, which implies that X is factorial by Theorem 1.1.

Figure 1.4: Example of a statement-proof pair.

to a statement in a greedy way, and one that provides a global bipartite matching

based on a structured max-margin objective. Such an architecture may have ap-

plications to other NLP problems that can be cast as maximum bipartite match-

ing problems, which is the case, for example, for some alignment problems

Taskar et al. (2005); Padó and Lapata (2006).

• We provide the results of qualitative analysis on our model, which sheds light on

the features that affect the model predictions.

1.3 Thesis Outline

Chapter 2 presents the prior background knowledge and related work of this thesis. We

will provide an introduction to the history of MIR and some existing datasets and MIR

models proposed by other researchers. We also introduce some basic concepts and

development of pretrained language models (PLMs), some of which will be used as the

encoder of our model. Then we briefly demonstrate the encoder-decoder architecture,

the basal structure of our model. Lastly, we give details about how we evaluate the

models for our MIR task (MATcH).

Chapter 3 provides the details of dataset construction, including the introduction

to the source corpus and its format, the method we use to identify the statement-proof

pairs from the articles and how we pre-process the data.

Chapter 4 discusses the symbol replacement setup. We start with the motivation

of designing this procedure. Then we show examples for the four levels of symbol

replacement which clearly illustrate the differences. Finally, we provide more infor-

mation about how symbol replacement is done in practical.

Chapter 5 presents our encoder-decoder based model. Firstly we introduce two

types of encoders and the trainable bilinear similarity function which used for measur-

ing if the given proof matches the statement. We also discuss more detail regarding the

two aforementioned decoding algorithms, local decoding and global decoding, as two

options for the decoder.
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Chapter 6 gives introduction to two training method with different objective func-

tions, local training and global training.

Chapter 7 shows the details of the experiments setup and the results obtained. We

provide the hyper-parameter setting and time consumption for all the experiments car-

ried out. We also present the results of qualitative analysis to shed light on the insight

of our model.

Chapter 8 concludes the thesis with a discussion of the limitations and suggests

potential directions for future work.



Chapter 2

Background

In this chapter, we review the history and related work of Information Retrieval (IR),

and especially Mathematical Information Retrieval (MIR) in Section 2.1. We focus on

the datasets the researchers used in the past and the existing methods they proposed,

with a discussion of their advantages and disadvantages. Then, in Section 2.2, we in-

troduce the development of pretrained language models (PLMs) which will be used as

the encoder of our model. As our model is based on encoder-decoder architecture, we

then demonstrate this structure proposed by Cho et al. (2014) in Section 2.3. Finally,

we explain the metrics we are going to use for evaluating the models in Section 2.4.

2.1 History

In this section, we review the history of Information Retrieval (IR) and Mathematical

Information Retrieval (MIR) and a series of previous approaches to solve the MIR

problem.

2.1.1 History of IR and MIR

Bush (1945) is the first one who described the idea of using computers to search for

information. Holmstrom detailed the idea on the conference held by the UK’s Royal

Society in 1948 (BERNAL et al., 1948). It became the first conference where computer

started to be used for Information Retrieval. After then in 1950s, several automated In-

formation Retrieval systems are proposed. Luhn (1957) introduced a system which

used words as indexing units and assigned scores for documents to indicate the rele-

vance to a given query. The documents with the top ranks were returned to the user.

7
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This is the foundation of ranked retrieval method. In 1960s, Gerard Salton formed the

a Information Retrieval research group at Cornell and proposed the SMART system in

1971 (Salton, 1971). Concepts in Information Retrieval such as vector space model,

relevance feedback, and Rocchio classification were developed in this research. The

system also allowed users to do experiments for improving searching quality and ef-

ficiency. 1970s saw many different retrieval techniques built on the advances of the

previous methods. One of the most notable work was the large-scale retrieval systems,

Lockheed Dialog system. Bourne and Hahn (2003) reviewed the development of the

Lockheed Dialog system from 1961 to 1972 including many technical details.

The aforementioned models were proven to be well-performed on small text cor-

pora such as the Cranfield collection (Singhal and Google, 2001), but there was no

evidence to show they were scalable to large text collections. Therefore, constructing

larger corpora became the crucial thing to push the Information Retrieval techniques

to next generation. Text Retrieval Conference1 (TREC), a series of evaluation con-

ferences, began in 1992 as part of the TIPSTER Text program sponsored by several

US Government agencies (Harman, 1993). It aimed at supporting and encouraging re-

search within IR from large corpus by providing researchers with large text collections.

Inspired by this, new techniques bloomed in 1990s. Korfhage (1997) and Baeza-Yates

and Ribeiro-Neto (1999) were two of the representative work published in late 1990s.

In the meantime, IR algorithms had been employed for searching the World Wide Web,

which let more and more users benefit from the evolution of IR techniques. Nowadays,

web search engines already become a necessary tool for all the Internet users.

The development of Mathematical Information Retrieval (MIR) was not as early

as IR. However, thanks to the experience obtained in the previous decades, researchers

noticed the importance of large corpus construction in order to build more powerful

and reliable IR systems. Lı́ska et al. (2011) constructed a corpus of mathematical texts

called MREC, containing 439,423 scientific documents with over 158 million mathe-

matical formulae. The major difference between MIR and traditional IR is that the sys-

tem needs to have the ability to deal with mathematical expression. So they proposed

a math aware, full-text based search engine called MIaS (Math Indexer and Searcher),

which addressed the problem. NII Testbeds and Community for Information access

Research (NTCIR) started to focus on the MIR task in 2013. Prior to that, limited

number of researchers had the chance to access the digital mathematics libraries and

MIR had not been paid much attention by the IR community (Aizawa and Kohlhase,

1http://trec.nist.gov
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2021). NTCIR organized three mathematical tasks from NTCIR-10 to NTCIR-12:

• The NTCIR-10 Math Pilot Task (Aizawa et al., 2013) was the first organized

task for mathematical formula search. There were two subtasks involved, one of

which was an MIR task: given a math query, the goal was to retrieve relevant

documents. The other subtask was to identify the descriptive context given a

math formula, which was more related to math understanding. According to the

submissions, participants showed more interests on the MIR task and considered

it more important.

• The NTCIR-11 Math-2 Task (Aizawa et al., 2014) considered the feedback col-

lected from NTCIR-10 and regenerated the dataset using the latest conversion

tool at the time. Given a query, participant systems needed to estimate the rele-

vant paragraphs in the dataset and return the ranked list of the documents con-

taining a matching formula or keywords. Additionally, NTCIR-11 Math-2 Task

provided an extra optional subtask using mathematical articles on Wikipedia.

The dataset was easier for understanding compared to the main task dataset con-

structed from arXiv2.

• The NTCIR-12 MathIR Task (Zanibbi et al., 2016) reused the arXiv corpus of

NTCIR-11 Math-2 Task and implemented with more topics. The Wikipedia cor-

pus was also upgraded for unprofessional use cases. The design of the task was

similar to NTCIR-11 but the query could be formula+keyword instead of pure

formula.

MIR attracted more and more attentions since these NTCIR tasks were released.

Researchers started to explore methods to encode the semantic information of mathe-

matical formulae and improve the performance of MIR systems, which will be further

discussed in Section 2.1.2.

2.1.2 Early works on MIR

Modern methods of Mathematical Information Retrieval (MIR) were designed for

three purposes, document retrieval, formula retrieval, and document synthesis (Guidi

and Coen, 2015).
2https://arxiv.org/
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Document retrieval Given a query combining keywords, free text and mathematical

formulae. The system returns a ranked list of documents that match the query.

Formula Retrieval Given a query formula E where E can also be a set of formulae,

the system retrieves all formulae that are in some relation R with the query.

Document synthesis Given a query, sometimes not in natural language but in an

expressed query language, the system composes a new mathematical document that is

relevant.

Modern NLP works designed for the three purposes above improved MIR using

encoding based method, most of which focus on establishing connections between

mathematical formulae and natural language text in order to improve the representation

of formulae.

The interpretation of variables is highly dependent on the context. For example, the

symbol E could denote an expectation in a statistics article, or the energy in a physics

article. Some studies use the surrounding context of a formula to assign a definition

or a type to the whole formula, or to specific variables. Nghiem Quoc et al. (2010)

focus on identifying coreferences between mathematical formulae and mathematical

concepts in Wikipedia articles. Kristianto et al. (2012) extract definitions of mathe-

matical expressions. Grigore et al. (2009), Wolska et al. (2011) and Schubotz et al.

(2016) disambiguate mathematical identifiers, such as variables, using the surrounding

textual context. Stathopoulos et al. (2018) inferred the type of a variable in a formula

from the textual context of the formula. Another line of work focused on identifying

specialized terms or concepts to improve MIR (Stathopoulos and Teufel, 2015, 2016).

Some work adapted standard NLP tools to the specificity of mathematical dis-

course, e.g. POS taggers (Schöneberg and Sperber, 2014), with the objective of using

linguistic features to improve the search for definitions of mathematical expressions

(Pagel and Schubotz, 2014). More recent work focused on typing variables in math-

ematical articles (Ferreira et al., 2022), modeling formulae (Mansouri et al., 2019;

Dadure et al., 2021b), and selecting premises (Ferreira and Freitas, 2020, 2021).

2.2 Pretrained Language Models

Pretrained language models (PLMs) are deep learning models trained over large text

corpus.
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Skip-Gram (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) are the first

generation of PLMs in which the word embeddings are static and not able to represent

word senses in different context. Since the development of deep learning comes to a

new era, varieties of neural networks such as convolutional neural networks (Kalch-

brenner et al., 2014; Kim, 2014; Gehring et al., 2017, CNNs), recurrent neural net-

works (Sutskever et al., 2014; Liu et al., 2016, RNNs), and attention mechanisms,

more specifically, the transformer architecture (Bahdanau et al., 2016; Vaswani et al.,

2017a), have been applied to construct PLMs that generate contextual embeddings.

Some notable methods are ELMo (Peters et al., 2018, RNN based), OpenAI GPT

(Radford and Narasimhan, 2018, transformer based) and BERT (transformer based)

(Devlin et al., 2018, transformer based), which are called the second generation PLMs.

The purpose of pretraining is to obtain a large neural network that can “under-

stand” the language and act as a language encoder for downstream tasks. Saunshi et al.

(2020) explored the success of PLMs on downstream tasks and provided mathematical

explanations by reformulating the tasks as sentence completion problems. Their work

shows the evidence of how PLMs help with the NLP tasks. As one of the most pop-

ular downstream tasks in Natural Language Processing, Information Retrieval is also

boosted by PLMs.

Figure 2.1 illustrates the pipeline of PLMs being used for downstream tasks. The

traditional procedure is that language model is first pretrained on a large text corpora

and then transferred to a smaller task-specific dataset for finetuning. It will finally re-

turn a model capable for the aforementioned task. Gururangan et al. (2020) presented

a study to demonstrate the importance of both domain-adaptive pretraining (an inter-

mediate indomain pretraining step between pretraining and finetuning on task-specific

dataset) and task-adaptive pretraining (adapating to the task’s unlabeled data, which

is the traditional finetuning step), which sheds light on the two-stage finetuning illus-

trated in Figure 2.1.

2.3 Encoder-decoder Architecture

The encoder-decoder structure was first designed to address the case that input se-

quence and output were both variable-length sequences in translation task (Cho et al.,

2014). For example, an English word “they” will be translated to two Chinese charac-

ters.

Figure 2.2 simply illustrates the encoder-decoder architecture. The structure con-
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Pretraining Two-stage Finetuning Final Model

Stage 1: Domain Adaptation Stage 2: Task Specific

Figure 2.1: Illustration of pretraining and finetuning the model. The model is fed a

large amount of unlabelled text data at the first step. In this step, the model forms the

parameters and learns how the language is written in general. Two-stage finetuning

consists of two steps. The first stage is optional where the model can continue being

trained on domain-specific corpus. The other stage is further training the PLM on a

labelled small task-specific dataset to get the final model.

tains two connected networks, encoder and decoder. After the encoder accepts a source

sequence input, it compresses the variable-length input to fixed-length vectors which

we call the hidden states (Yang et al., 2020). This is the procedure of encoding. Dur-

ing decoding, the decoder takes the final hidden state produced from the encoder and

processes and converts the vectors to the form we need such as text and probabilities.

Some PLMs such as BERT acts as an encoder in the encoder-decoder architecture and

the word embeddings generated from BERT are the hidden states. The finetuning layer

can be treated as the decoder. In IR, the decoder uses the word embeddings to measure

the similarities between the queries and documents.

Input Encoder Hidden State Decoder Output

Figure 2.2: A simple illustration of encoder-decoder architecture.

2.4 Evaluation of MIR Models

In this thesis, we use two evaluation metrics. Assumming that a system predicts a

ranking of proofs, instead of providing only a single proof, we evaluate its output with

the Mean Reciprocal Rank (MRR) measure. Assuming the user starts looking down

ranked list until the target document is found, r̂i is the rank of the gold document for

the i-th query as predicted by the system and N is the total number of documents. The

calculation of MRR is shown in Equation 2.1. Craswell (2009) points out that MRR is
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a proper evaluation metric for known item search which means the user has seen the

exact target document before.

MRR({r̂i}i∈{1,...N}) =
1
N

N

∑
i=1

1
r̂i

(2.1)

As a second evaluation metric, we use a simple accuracy, i.e. the proportion of

queries whose first-ranked document is correct (shown in Equation 2.2).

Acc =
Number of queries whose first-ranked document is correct

Number of queries
(2.2)

In our case, queries are the mathematical statements and documents are the proofs.

By construction (see Section 3.3), it is possible though unlikely that the same math-

ematical statement occurs several times in the dataset. It is more unlikely that sev-

eral occurrences have exactly the same formulation and use the same variable names.

Therefore, we consider a match to be correct if and only if it is associated with its

original proof.



Chapter 3

Dataset Construction

This chapter describes the construction of the MATcH dataset of statement-proof pairs

(see Figure 1.4 for an example).

3.1 Source Corpus

In this project, we use the MREC corpus1 (Lı́ška et al., 2011) as a source. The MREC

corpus contains around 450k articles from ArxMLiV (Stamerjohanns et al., 2010), an

on-going project aiming at converting the arXiv2 repository from LATEX to XML, a for-

mat more suited to machine processing, using the LaTeXML3 tool. Instead of copying

all the content from arXMLiv corpora, they make sure it only contains XML docu-

ments marked as converted successfully so that no problem will be issued in practical

usage. The source corpus covers several scientific domains such as Physics, Mathe-

matics, Computer Science, Quantitative Biology, Quantitative Finance and Statistics.

In this collection, mathematical formulae are represented in the MathML4 format, a

markup language.

3.2 MathML

Mathematical Markup Language (MathML) (Ausbrooks et al., 2010) is an application

of XML to represent mathematical formulae, which can also capture the stucture and

1https://mir.fi.muni.cz/MREC/, version 2011.4.439.
2https://arxiv.org/
3https://math.nist.gov/˜BMiller/LaTeXML/
4https://www.w3.org/Math/
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content. The purpose of using MathML is to properly show mathematical formulae on

World Wide Web pages and other documents.

MathML has two versions with different flavours: Presentation MathML and Con-

tent MathML. Presentation MathML aims at capturing the notational structure and

focuses on displaying the equations. Rather than the layout, Content MathML pays

more attention on the meaning of the expressions. Figure 3.1 and Figure 3.2 respec-

tively shows an example of Presentation MathML and Content MathML for the for-

mula: ax2 + bx+ c. The mathematical contents in the MREC corpus are written in

Presentation MathML, which is better for displaying on the webpage. Since BERT

takes linear sequences as input, using Presentation MathML will also be easier to re-

cover the original tokens order in the documents.

<math>

<mi>a</mi>

<msup>

<mi>x</mi>

<mn>2</mn>

</msup>

<mo>+</mo>

<mi>b</mi>

<mi>x</mi>

<mo>+</mo>

<mi>c</mi>

</math>

Figure 3.1: A Presentation MathML example to represent the formula: ax2 +bx+ c.

Presentation MathML contains token elements and layout elements. The top three

frequent token elements are:

• <mi>a</mi>: identifiers

• <mo>+</mo>: operators

• <mn>2</mn>: numbers

Some significant layout elements are:
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<math>

<apply>

<plus/>

<apply>

<times/>

<ci>a</ci>

<apply>

<power/>

<ci>x</ci>

<cn>2</cn>

</apply>

</apply>

<apply>

<times/>

<ci>b</ci>

<ci>x</ci>

</apply>

<ci>c</ci>

</apply>

</math>

Figure 3.2: A Content MathML example to represent the formula: ax2 +bx+ c.

• <mrow>: a horizontal row of items

• <msup></msup>: superscripts

• <msub></msub>: subscripts

• <mfrac></mfrac>: fractions

• <<msqrt>></<msqrt>>: roots

In the example shown in Figure 3.1, we can observe all the top three token elements

and the superscript layout element.
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3.3 Construction

Statement-proof identification For each XML article (corresponding to a single

arXiv article), we extract pairs of consecutive <div> tags such that: (i) the class

attribute of the first div node contains the string "theorem"; (ii) the class attribute of

the second div node is the string "proof". Articles that do not contain such pairs of

tags are discarded, as well as articles that are not written in English (representing 143

articles in French, 11 in Russian, 5 in German, 2 in Portuguese and 1 in Ukrainian), as

identified by the polyglot Python package.5

In the remaining collection of pairs of statements and proofs, we filter out pairs for

which either the statement or the proof is too short.6 Indeed, the short texts were often

empty (only consisting of a title, e.g. “5.26 Lemma.”), which we attribute to the noise

inherent to the conversion to XML, or not self-contained. In particular, we identified

several prototypical cases:

• Omitted (or easy) proofs contain usually a single word (‘omitted’, ‘straightfor-

ward’, ‘well-known’, ‘trivial’, ‘evident’), but are sometimes more verbose (‘This

is obvious and will be left to the readers’).

• Proofs that consist of a single reference to

– An appendix (‘See Appendix A’);

– Another theorem (‘This follows immediately from Proposition 4.4 (ii).’);

– The proof method of another theorem (‘Similar to proof of Lemma 6.1’)

– Another article (‘See [BK3, Theorem 4.8].’);

– Another part of the article (‘The proof will appear elsewhere.’, ‘See above.’,

‘Will be given in section 5.’).

Filtering on the number of tokens also exclude self-contained short proofs, such as

‘Take Q′= phi− pi.’ However, such proofs were very infrequent on manual inspection

of the discarded pairs (2 in a manually inspected random sample of 100 discarded

proofs).

5www.github.com/aboSamoor/polyglot/
6We used a minimum length of 20 tokens for both statements and proofs, based on a manual inspec-

tion of the shortest examples. We also exclude proofs and statements longer than 500 tokens.

www.github.com/aboSamoor/polyglot/
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Statements Proofs %

20 7 0.0

10 80 0.2

5 1027 1.9

2 11949 22.6

= 1 19531 37.0

<1 21275 40.3

Table 3.1: Cumulative distribution of proofs in the development set, by number of state-

ments to which they are assigned with the local decoding method.

Preprocessing: linearizing equations Mathematical formulae in the XML articles

are enclosed in a <math> markup tag, that materializes the switch to the MathML

format, and whose internal structure represents the formula as an XML tree. As a

preprocessing step, we linearize each formula to a raw sequence of strings.

In MathML, an equation can be encoded in a content-based (semantic) way or in a

presentational way, using different sets of markup tags, as we mentioned before. We

first convert all MathML trees to presentational MathML using the XSL stylesheet

from the Content MathML Polyfill repository.7 Then we perform a depth-first search

on each tree rooted in a <math> tag to extract the text content of the whole tree.

During this preprocessing, we tested several processing choices:

• Font information. In mathematical discourses, fonts play an important role.

Their semantics depend on conventions shared by researchers. If both x and x
appear in the same article, they are most likely to represent different mathemat-

ical objects, e.g. a scalar and a vector. Therefore, we use distinct symbols for

tokens that are in distinct fonts.

• Math-English ambiguity. Some symbols can be used both in natural language

text and in formulae. For example, ‘a’ can be a determiner in English, or a

variable name in a formula. To avoid increasing ambiguity when linearizing

formula, we type each symbol (as math or text) to make the mathematical vo-

cabulary completely disjoint from the text vocabulary.

Both these preprocessing steps had a beneficial effect on the baselines in preliminary

experiments.

7https://github.com/fred-wang/webextension-content-mathml-polyfill

https://github.com/fred-wang/webextension-content-mathml-polyfill


Chapter 3. Dataset Construction 19

Number of articles in the MREC corpus 439,423

Extracted articles with statement-proof pairs 27,841

Total number of statement-proof pairs 184,094

Number of (primary) categories (120) 135

Average number of categories per article 1.7

Most represented primary categories # articles # pairs

math.AG Algebraic Geometry 2848 22029

math.DG Differential Geometry 2030 12440

math.CO Combinatorics 1705 10548

math.GT Geometric Topology 1539 9234

math.NT Number theory 1454 9521

math.PR Probability 1422 7660

math.AP Analysis of PDEs 1386 6981

math-ph Mathematical Physics 1249 6491

math.FA Functional Analysis 1143 8011

math.GR Group Theory 970 7806

math.DS Dynamical System 961 6424

math.QA Quantum Algebra 944 8074

math.OA Operator Algebras 923 8050

Table 3.2: Statistics about the dataset and categories of mathematical articles

Statistics We extract statement-proof pairs as described above. Our processing of

MREC includes the identification of statement-proof pairs through meta tags and the

linearization of the representation of mathematical equations.

We report in Table 3.2 some statistics about the dataset we collected. The ex-

tracted articles were from a diverse set of mathematical subdomains, and connected

domains, such as computer science (746 articles from 30 subcategories) and mathe-

matical physics (2562 from 31 subcategories). There are in average 6.6 statement-

proof pairs per article. Table 3.1 depicts the cumulative distribution of proofs and the

number of statements they are assigned to.

We report statistics about the size of statements and proofs in number of tokens in

Table 3.3. We report the number of tokens in formulae (math), in the text itself (text)

and in both (text+math). On average, proofs are much longer than statements. State-

ments and proofs have approximately the same proportion of text and math. Overall,

the variation in number of tokens across statements and proofs is extremely high, as
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Statements Min Max Mean±SD

Text+math 20 500 80±57

Text only 1 398 30±20

Math only 0 470 58±20

Math proportion 0% 99.5% 58%±20

Proofs

Text+math 20 500 210± 127

Text only 1 467 81 ± 56

Math only 0 495 129 ± 96

Math proportion 0% 99.6% 56%± 21

Table 3.3: Number of tokens in the dataset. We report for statements and proofs the

minimum, maximum and average number of tokens broken down by type (‘math’ for

tokens extracted from formulae and ‘text’ for the others). A value of 0 for, e.g. the ‘math

only’ row, means that the statement or proof does not contain mathematical symbols or

formulae.

illustrated by the standard deviation (SD) of all presented metrics.
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Symbol Replacement

This chapter introduces the motivation and the technical details about our symbol re-

placement method.

4.1 Motivation of Symbol Replacement

With our current dataset setup, we implicitly make the assumption that both the theo-

rem and the proof are authored by the same authors. This assumption is incongruent

with the MIR-flavor of our task. First, it is not useful for researchers to match proofs

they authored. Second, each person has a unique writing style expressed by unique

mathematical jargon and notations. For example, Aggarwal (2017) wrote the Abel’s

Theorem as the form shown in Figure 4.1. The Abel’s Theorem page on Wikipedia1

introduces the theorem in another way with different mathematical notations shown

in Figure 4.2. In such case, the proof provided by Aggarwal (2017) might not be re-

trieved by simple mathematical symbol matching while using the Abel’s Theorem on

Wikipedia as the query.

To relieve of this assumption, we introduce four symbol replacement levels for

changing the names of the proof’s variables. Then, we train and test our models using

these altered datasets. These replacement levels also provide insight on the ability of

our models to semantically analyze the input statement-proof pairs, which allow us to

explore what information have the models learned from the data.

1https://en.wikipedia.org/wiki/Abel%27s_theorem
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Let f (x) = ∑
∞
n=0 anxn be a power series with finite positive radius of convergence R. If

the series converges at x = R, then f is continuous at x = R. If the series converges at

x =−R, then f is continuous at x =−R.

Figure 4.1: Abel’s Theorem represented in Aggarwal (2017)’s paper.

Let the Taylor series G(x) = ∑
∞
k=0 akxk be a power series with real coefficients ak with

radius of convergence 1. Suppose that the series ∑
∞
k=0 ak converges. Then G(x) is

continuous from the left at x = 1, that is,

lim
x→1−

G(x) =
∞

∑
k=0

ak

Figure 4.2: Abel’s Theorem represented on Wikipedia.

4.2 Replacement Levels

We propose different levels of symbol replacement, focusing on mathematical nota-

tion. More precisely, we aim to replace the proof variable names if they appear in the

statement without damaging the proof semantics. As we mentioned, we also expect to

simulate the situation that the statement and proof are written by different authors. To

do that, we change symbols that appear both in the proof and the statement. We do not

change constant symbols such as π, as they often carry semantic meaning outside of

the proof scope.

We experiment with four levels of symbol replacement (examples in parenthesis):

• Symbol conservation: All symbols remain intact, so the theorem and the proof

overlap. All previous work uses that. (an = an−1 +an−2)

• Partial symbol replacement: A fraction of α of all the symbols in the proof

remain the same, and the rest are changed. In our experiments, we use α = 0.5.

(xn = xn−1 + xn−2)

• Full symbol replacement: All symbol names are changed (α = 1.0 as above).

(xi = xi−1 + xi−2)

• Symbol transposition: We permute the variables’ names such that no symbol

remains the same, thus changing their original functionality. (na = na−1+na−2)
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4.3 Details

We follow the following rules when replacing symbols:

• Only the proof symbols are being replaced as there is no need to replace both

statement and proof symbols. In Figure 4.3, we do not replace the mathematical

symbols in the statement.

• We replace symbols only if they appear in both the statement and the proof. In

Figure 4.3d, only α, T , r, A, G and λ are replaced by random English or Greek

letters. γ, ρ and s remains unchanged since they only appear in the proof.

• We preserve the format of the mathematical symbols. For example, in Fig-

ure 4.3e, when we create the mapping a → t, we will also apply A → T on

A.

• We do not replace the double-struck letters, e.g., R, since they usually represent

fields and constant. We do not replace standard constant symbols such as π.

• We observe that some variables carry meaning. For example, the variable dim

can be interpreted as d ∗ i ∗m or as one variable named dim. To avoid this am-

biguity, we find all the variables’ names that are longer than two English letters

and use an English spellchecker2 to detect which of those are English words.

Suppose a multiple-letter variable is detected as an English word. In that case,

we will add it to the denylist to ensure we do not treat it as multiple single-letter

variables’ names. This can also be observed in Figure 4.3 where we preserve

“ker” to avoid breaking the meaning of “kernel”.

• While randomly picking mathematical symbols to create mappings, we avoid se-

lecting those symbols already appeared in the proof. For example in Figure 4.3c,

we will exclude g, a, h and s while picking an English letter to replace letter r.

After we randomly pick o for replacement, we will remove o from the candi-

date list as well. This is also a consideration of keeping the original semantic

information.

2https://pyenchant.github.io/pyenchant/

https://pyenchant.github.io/pyenchant/
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Theorem: Proposition 3.2. The map λ 7→ λ|G0 is a bijection between the left invari-

ant sections of |Ω|α(kerTr) and the sections of |Ω|α(A(G)). This bijection preserves

smoothness as well as positivity.

(a) An example statement in the dataset.

Proof: The restriction is well defined, since |Ω|α(kerTr) contains |Ω|a(A(G)). To

prove that the map in question is bijective, it is sufficient to check that its inverse is

ρ 7→ λ, where ρ ∈ |Ω|α(A(G)) and λ(γ) = γ ·ρ(s(γ)).

(b) Symbol conservation which is also the original proof.

Proof: The restriction is well defined, since |Ω|ψ(kerTo) contains |Ω|ψ(A(H)). To

prove that the map in question is bijective, it is sufficient to check that its inverse is

ρ 7→ λ, where ρ ∈ |Ω|ψ(A(H)) and λ(γ) = γ ·ρ(s(γ)).

(c) Partial symbol replacement with mapping α → ψ, r → o, G → H.

Proof: The restriction is well defined, since |Ω|ζ(kerXv) contains |Ω|ζ(B(J)). To

prove that the map in question is bijective, it is sufficient to check that its inverse is

ρ 7→ ι, where ρ ∈ |Ω|ζ(B(J)) and ι(γ) = γ ·ρ(s(γ)).

(d) Full symbol replacement with mapping α → ζ, T → X , r → v, A → B, G → J, λ → ι

Proof: The restriction is well defined, since |Ω|λ(kerGa) contains |Ω|λ(T (R)). To

prove that the map in question is bijective, it is sufficient to check that its inverse is

ρ 7→ α, where ρ ∈ |Ω|λ(T (R)) and α(γ) = γ ·ρ(s(γ)).

(e) Symbol transposition with mapping α → λ, T → G, r → a, A → T , G → R, λ → α.

Figure 4.3: An example for demonstrating the four symbol replacement levels.
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Statement-Proof Matching model

This Chapter introduces the structure of our matching model and goes through each

part of the model with more details. In Section 5.1, we start with illustrating the over-

all structure of our model. Afterwards, Section 5.2 introduces the self-attention mech-

anism and transformer architecture, which are the crucial components of our BERT

encoder. We also give more details about the NPT and BERT encoders we use in the

experiments. Finally, we finish up with an introduction to the two decoding methods

of the our model in Section 5.3.

5.1 Structure Overview

Figure 5.1 briefly illustrates the architecture of our matching model. The mathematical

statement and proof pair will be respectively fed into the encoder (see Section 5.2),

which transforms them into two vector representations. In the next step, the decoder

(see Section 5.3) takes these two vectors and returns the matching score of the input

pair.

5.2 Encoders

5.2.1 Preliminaries

5.2.1.1 Self-attention

In the sentence “I arrived at the bank after crossing the river”, the word “bank” has

two different meanings: 1) an organization where people and businesses can invest or

borrow money, change it to foreign money, etc., or a building where these services are

25
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Figure 5.1: The structure overview of our matching model.

offered, 2) sloping raised land, especially along the sides of a river. While translating

the sentence, to figure out which meaning “bank” refers to, the model needs to make

decision based on the other words in the sentence. Recurrent neural networks (RNNs),

a typical neural model architecture in machine translation, determine the word sense

by reading each word between “bank” and “river” step by step. However, with the

information accumulated in each time step, the more steps the decisions require, the

harder it is for the RNNs to correctly choose the correct word sense. Vaswani et al.

(2017a) proposed self-attention mechanism to solve the problem by directly connecting

two tokens using one step of calculation. It no longer depends on time-dependent state

like what RNNs require.

What is self-attention? Attention is simply a matrix showing the relativity of words

in a sentence. In the general encoder-decoder structure, the source and target sentences

are different. A typical example, in English-Chinese machine translation task, the

source sentences are written in English and the target sentences are in Chinese. The

word “self” in “self-attention” indicates that the self-attention mechanism focuses on

the intra-relationship within a source or target sentence.

How does self-attention work? First, for a input sentence, the tokens in the sentence

are embed to a branch of vectors input#1, input#2 and input#3. For each input, we

have three representations, query Q, key K and value V , shown in Figure 5.2. The



Chapter 5. Statement-Proof Matching model 27

Figure 5.2: The three representations, query, key and value of an input sen-

tence. Here we suppose every input has a dimension of 4 and the representa-

tions have a dimention of 3. Retrieved from https://towardsdatascience.com/

illustrated-self-attention-2d627e33b20a

query, key and value are derived from the multiplication of the input and three sets of

weights W q, W k and W v, shown in Equation 5.1b to Equation 5.1c, where ai is the i-th

input. Figure 5.3 illustrates the following steps. The attention scores for input#1 are

calculated by taking the dot product between input#1’s query with the keys of other

input tokens, which ends up with three attention scores. All the attention scores will

pass through a softmax function and then multiplied with their corresponding value to

get the alignment vectors (yellow). Eventually, output#1 is obtained from the sum of

these three alignment vectors.

Qi =W qai (5.1a)

Ki =W kai (5.1b)

V i =W vai (5.1c)

5.2.1.2 Transformers

Vaswani et al. (2017a) proposed the Transformer architecture that aims to solve sequence-

to-sequence tasks when facing long-range dependency problem. It is based on the

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
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Figure 5.3: The illustration of the calculation of attention scores for Input

1. From Raimi Karim. Retrieved from https://towardsdatascience.com/

illustrated-self-attention-2d627e33b20a

multi-head self-attention mechanism, which is actually doing the same thing as what

we introduced in Section 5.2.1.1 with multiple heads or agents instead of doing it by

one.

Multi-head Self-attention The multi-head self-attention makes the computation par-

allel and independent. Equation 5.2 gives the definition of multi-head attention (where

the projections are parameter matrices W Q
i ∈R×dk , W K

i ∈R×dk , WV
i ∈R×dv and W O ∈

Rhdv×). After the independent attention heads are computed in parallel, they will be

concatenated and mapped to the output dimension through a linear layer.

MultiHead(Q,K,V) = Concat(head1, . . . ,headh)WO (5.2)

where headi = Attention(QW Q
i ,KW K

i ,VWV
i )

Encoder and Decoder Transformer consists of a pair of encoder-decoder stacks (il-

lustrated in Figure 5.4). The encoder consists of 6 identical layers. Each of them

contains two sub-layers: 1) a multi-head self-attention layer and, 2) a simple, posi-

tional fully connected feed-forward network. In each sub-layer, layer normalization

and residual connection are applied. The decoder also consists of 6 identical layers,

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
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consisting of an extra masked multi-head attention layer.

Figure 5.4: The Transformer - model architecture. From Vaswani et al. (2017a).

Positional Embeddings Since the transformer model does not contain recurrence

and convolution. We need an alternative way to preserve the order of the sequence.

Vaswani et al. (2017a) introduced the “positional encodings” to the input embeddings

at the beginning of the encoder and decoder stacks. These encodings follow a specific

periodic function as shown in Equation 5.3 and 5.4.

PE(pos,2i) = sin(pos/100002i/dmodel) (5.3)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (5.4)

5.2.2 NPT encoder

The “no pre-training” encoder (NPT) is built on the self-attention mechanism (Vaswani

et al., 2017b), which originally proposed as the self-attention layer of Transformers (as

introduced in Section 5.2.1.1).
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With the self-attentive encoder we describe above, the sequence of tokens can be

encoded to a a sequence of fixed-size vector representations for statements and proofs.

In particular, we run l self-attention layers to get the contextualized embedding for

each input token. The final vector representation for the text will be constructed by a

max-pooling layer over the embeddings obtained from the last self-attention layer.

5.2.3 BERT encoder

5.2.3.1 BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers, is

basically a stack of Transformer encoder layers with multiple self-attention heads. It

uses the attention mechanism to learn the contextual relations in the text. Opposing to

the previous pretrained language models, BERT is the first model which introduces the

concept of “bidirectional”. It no longer strictly process the text from left to right, but

jointly consider both left and right context in all layers. This setup was proved to be

more powerful than the unidirectional language models (Devlin et al., 2018).

The complete version of BERT contains both an encoder for reading the input

sentences and a decoder to offer the prediction for the task. In our model, we have a

separate trainable decoder (see Section 5.3), so only the encoder is needed.

As it is illustrated in Figure 5.5, the input embeddings of BERT is the sum of token

embeddings, sentence embeddings and positional embeddings. The input embeddings

will be passed forward and updated using two tasks: Masked Language Model (MLM)

and Next Sentence Prediction (NSP).

• MLM: Before the input text sequences are fed into the encoder,15% of the to-

kens are “masked out”. 80% of the selected tokens will be replaced with the

[MASK] token. 10% of them are replaced with random tokens and the last 10%

are left unchanged. BERT will try to predict the masked tokens based on the

provided context (i.e. the non-masked tokens).

• NSP: The Next Sentence Prediction task was designed to understand the rela-

tionship a pair of sentences. Given two sentences, the model learns to predict if

the second sentence is the subsequent sentence of the other sentence in the docu-

ment. However, Liu et al. (2019) suggested that removing the NSP loss slightly

improved the performance of downstream task. Therefore, some researchers

chose not to get NSP involved while training BERT model.
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A survey concludes that BERT has become a ubiquitous baseline after investigating

over 150 studies of the popular BERT model (Rogers et al., 2020). One of the most sig-

nificant advantages of BERT is that the contextual embeddings generated from BERT

form distinct clusters to word senses, which solves the issue of the first generation

PLMs (Wiedemann et al., 2019; Schmidt and Hofmann, 2020).

5.2.3.2 Domain Adaptation of BERT

In Section 2.2, we introduced the two-stage finetuning in Figure 2.1. Researchers

started to use this pipeline to adapt BERT to various domains including mathemat-

ics (Shen et al., 2021, MATHBERT), clinical text (Alsentzer et al., 2019, CLINICAL-

BERT), biomedical text (Lee et al., 2019, BIOBERT), financial text (Araci, 2019,

FINBERT), and scientific text (Beltagy et al., 2019, SCIBERT). All of these domain

adapted version of BERT outperformed the out-of-box BERT trained on general do-

main corpora on the tasks in their specific domains.

Figure 5.5: BERT input representation (Devlin et al., 2018).

5.3 Decoder

Trainable bilinear similarity function Given the encoded representations of a state-

ment s = enc(s) and a proof p = enc(p), we compute an association score with the

following bilinear form:

score(s,p) = s⊤ ·W ·p+b,

where W and b are parameters that are learned together with a self-attentive encoder

or a pretrained BERT encoder parameters (Section 5.2).
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Local decoding For a collection of n statements and proofs, we first score all possi-

ble pairs (s, p), and construct a matrix M = (mi j) ∈ Rn×n, with

mi j = score(s(i),p( j)),

where s(i) and p( j) are the encoded representations of, respectively, the ith statement

and the jth proof. Then we can straightforwardly sort each row by decreasing order

and assign the proof ranking to the corresponding statement. The best ranking proof p̂

for statement i satisfies p̂i = argmax j mi j. We call this decoding method ‘local’, since

it does not take into account dependencies between assignments. In particular, several

statements may have the same highest-ranking proof.

Global decoding The local decoding method overlooks a crucial piece of informa-

tion: a proof should correspond to a single statement. In a worst-case situation, a small

number of proofs may score high with most statements and be systematically assigned

as highest-ranking proof by the local decoding method.

In preliminary experiments, we analysed the output of our system with local decod-

ing on the development set, focusing on the distribution of the single highest-ranking

proof for each statement. We found that 23% of the proofs were assigned to at least two

different statements, whereas more than 40% of proofs were assigned to no statement.

See also Table 3.1.

We propose a second decoding method based on a global constraint on the output:

a proof can be assigned only to a single statement. Intuitively, the constraint models

the fact that if a proof is assigned by the system to a certain statement with high confi-

dence, we can rule it out as a candidate for other statements. Under this constraint, the

decoding problem reduces to a classical maximum weighted bipartite matching prob-

lem, or equivalently, a Linear Assignment Problem (LAP). In more realistic scenarios

(e.g. if the input sets of statements and proofs do not have the same size), the method

would require some adaptation.

Formally, we define an assignment A as a boolean matrix A = (ai j) ∈ {0,1}n×n

with the following constraints:

∀i∀ j,∑
j

ai j = ∑
i

ai j = 1,

i.e. each row and each column of A contains a single non-zero coefficient. The score

of an assignment A is the sum of scores of the chosen edges:

score(A,M) = ∑
i

∑
j

ai jmi j.
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Finally, global decoding consists in solving the following LAP:

Â(M) = argmax
A∈{0,1}n×n

s.t. ∀i∀ j,∑ j ai j=∑i ai j=1

score(A,M).

The LAP is solved in polynomial time by the Hungarian algorithm Kuhn (1955),

the LAP-Jonker-Volgenant algorithm (LAP-JV; Jonker and Volgenant, 1987), or the

push-relabel algorithm Goldberg and Kennedy (1995). These methods have a O(n3)

time complexity where n is the number of pairs, and O(n2) memory complexity. This

is too expensive in our case, due to our dataset size.

To remedy this limitation, when we perform decoding on a large set, we only con-

sider the k best-scoring proofs (i.e. outgoing edges in the bipartite graph) for each

statement, which makes the number of edges linear in the number of pairs n (consid-

ering k fixed). Moreover, we use a modification of the LAP-JV algorithm specifically

designed for sparse matrices (LAP-MOD; Volgenant, 1996).
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Local and Global Training

In this chapter, we introduce two training methods for the similarity model: a local

training method that only considers statements in isolation (see Section 6.1) and a

global model trained to predict a bipartite matching (see Section 6.2), with a hybrid

global-local objective.

6.1 Local Training

We would like to train our model to assign a high similarity to the gold statement-

proof pair, and a low similarity to all other statment-proof pairs. This corresponds to

the following objective, for a single statement s and its gold proof p:

LLOC(s, p,P;θ) =− logP(p|s;θ)

=− log

 exp(score(s,p))
∑

p′∈P
exp(score(s,p′))

 ,

where P is the set of proofs, and θ are the parameters of the model. Directly optimiz-

ing this loss function requires the computation of p = enc(p) for every proof in the

dataset, for a single optimization step. This is not realistic considering memory limi-

tations, the size of the train set, and the fact that our self-attentive encoder is the most

computationally expensive part of the network.

Instead, we sample minibatches of b pairs and optimize the following proxy loss

for the sequence S′ = (s1, . . . ,sb) of statements and the sequence P′ = (p1, . . . , pb) of
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corresponding proofs:1

L ′
LOC(S′,P′;θ) =

b

∑
i=1

LLOC(si, pi,P′;θ).

In practice, we sample uniformly and without replacement b pairs from the training set

at each stochastic step.

6.2 Global Training

The local training method only considers statements in isolation. Even though we

expect a locally trained model to perform better with global decoding, we hypothesize

that a model that is trained to predict the full structure (a bipartite matching) will be

even better.

For a collection of n proofs and n statements, the size of the search space (i.e. the

number of bipartite matchings) is n!, since each matching corresponds to a permutation

of proofs. As a result, the use of a globally normalized model is impractical. We turn

to a max-margin model that does not require normalization over the full search space.

We use the following max-margin objective, for a set B of n pairs corresponding to

matrix M:

LGLOBAL(B;θ) =max(0,∆(Â, I)

+ score(Â,M)− score(I,M)),

where θ is the set of all parameters Â is the predicted assignment and I is the gold

assignment, i.e. the identity matrix. The structured cost

∆(Â, I) = ∑
i j

max(0,(Â− I)i j)

aims at enforcing a margin for each individual assignment. M′ = M+(1− I).
The computation of this loss requires exact decoding for each optimization step.

Since exact decoding is only feasible for a small n, and since we need to keep track

of all intermediary vectors to compute the backpropagation step,2 we perform each

stochastic optimization step on a minibatch of pairs of size b. Since this global objec-

tive had a slow convergence rate, in practice, we use a hybrid local-global objective:

L ′
LOC +LGLOB.
1We also experimented with a Noise-Contrastive Estimation approach Gutmann and Hyvärinen

(2012). However, it exhibited a much slower convergence rate.
2In particular, the computation graph needs to conserve all encoding layers for the 2n texts involved.
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Experiments and Results

In this chapter, Section 7.1 introduces how we set up the experiments. Section 7.2

presents the results and discusses the patterns we have observed. At last, Section 7.3

illustrates the qualitative analysis using Local Interpretable Model-Agnostic Explana-

tions (LIME), to offers some “insight” on how the BERT model makes decision on our

task.

7.1 Experimental Setup

Dataset We use the dataset whose construction is described in Section 3. We shuf-

fle the collection of statement-proof pairs before performing a 80%/10%/10% train-

development-test split, corresponding to 147278 pairs for the training sets and 18408

pairs for the development and tests.

Encoders We experiment with several encoders to obtain neural representations of

the theorem and proof pairs. Our first encoder is a simple self-attentive encoder. We

use ℓ = 2 self-attentive layers with 4 heads to obtain contextualized embeddings of

dimension d = 300. The query and key vectors have size dk = 128. We construct

a vector representation for the text with a max-pooling layer over the contextualized

embeddings of the last self-attention layer. We do not use any form of pre-training

for this encoder and hence name it “no pre-training encoder” (NPT). In addition, we

experiment with a BERT model Devlin et al. (2019) as an encoder. We do not use

the pre-trained version provided by Devlin et al., but rather pre-train the base ver-

sion from scratch (SCRATCHBERT), but we do compare our results against a math-

tailored pre-trained version of BERT (Peng et al. 2021; see below). Both the NPT and
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SCRATCHBERT vocabularies are customized for our dataset, as preliminary experi-

ments revealed the importance of the model-task vocabulary match.1

To further demonstrate how crucial this vocabulary match is, we experiment with

math-BERT (MATHBERT; Shen et al. 2021), a state-of-the-art pre-trained model for

mathematical formula understanding. This model is pre-trained on a large mathemat-

ical corpus ranging from pre-kindergarten, to high-school, to college graduate level

mathematical content, including professional mathematical papers, using the BERT

masked language modeling (MLM) task. We use the pre-trained version provided by

the authors, without vocabulary customization. All of our encoders are fine-tuned on

the matching task. In addition, we experiment with a naive token-matching system

that computes cosine similarities between TF-IDF representations of statements and

proofs. We discovered that their performance was very low, ranging from 11.4 to 29.8

(MRR), so we did not experiment with them further.

Hyperparameters For pretraining SCRATCHBERT, we first train a new word piece

tokenizer2. Next, we train the SCRATCHBERT model on the MLM task for 60 epochs

(around 3 days) using four NVIDIA v100 GPUs. We evaluate the language model

every 500 steps, where one step stands for training on one sentence example, and

choose the one with the best performance on the validation set.

We perform local and global training / finetuning respectively for the NPT model,

MATHBERT, and SCRATCHBERT. NPT has 15M parameters while MATHBERT and

SCRATCHBERT have 110M parameters. We observed in initial experiments that train-

ing only with the global objective required a long time to converge. Therefore, we used

the following global-local objective: L ′
LOC +LGLOB, that we optimized by alternating

one stochastic step for each loss.

We train the NPT model for 400 epochs (around 1 day with two GPUs) over the

whole training set for local and global training. We use batches of size b = 60 and

set learning rate l = 5×10−3 with the Averaged Stochastic Gradient Descent (ASGD;

Polyak and Juditsky 1992) optimizer. We use an exponential learning rate scheduler

(the learning rate multiplied by 0.996 after each epoch) to stabilize the optimizer in the

latter training procedure (after 300 epochs). We evaluate the performance of the model

on the validation set every 20 epochs during training and select the best one among

these intermediate models.
1This supports the findings of chalkidis-etal-2020-legal, for example, in a different domain.
2https://huggingface.co/docs/transformers/tokenizer_summary#wordpiece

https://huggingface.co/docs/transformers/tokenizer_summary##wordpiece
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We use four NVIDIA v100 GPUs to fine-tune MATHBERT and SCRATCHBERT

on the training set for 60 epochs (around 2 days) with a learning rate of l = 2×10−3,

an ASGD optimizer, batches of size b = 16, and a scheduler that multiplies the learn-

ing rate by 0.99 after each epoch. We choose the best model on the validation set,

evaluating the models every five epochs.

Global decoding Recall that exact global decoding is only feasible for a small sub-

set of pairs. During global training, we chose a batch size small enough to perform

exact decoding. However, it is not feasible to perform exact decoding on the whole

development and test corpora. Therefore, we prune the search space by keeping only

the 500-best candidate proofs for each statement, and use the LAP-MOD algorithm

designed for sparse matrices. In practice, we used the implementations of the LAP-JV

and LAP-MOD algorithms from the lap Python package,3 for respectively exact de-

coding on minibatches during global training and decoding on whole datasets during

evaluation.

7.2 Results

Our experiments address several questions. First, we assess the task’s difficulty un-

der different replacement levels using different encoders and schemes (global or local

training, global or local decoding). In particular, we are interested in assessing whether

global decoding improves accuracy when training is only local, and how the more com-

plex global training method fares with respect to local training. We then measure the

informativeness of different types of input: text, mathematical formulae, or both. The

comparison of these settings is meant to provide insight into which type of information

is crucial to the task. Finally, we experiment with a cross replacement levels setup, i.e.,

when a model is tested on a different symbol replacement level from the one that was

used during training. We hope this experiment will shed some light on the importance

of training models on real-world datasets.

7.2.1 Main Results

Table 7.1 presents our results. We report MRR (if relevant) and accuracy scores across

different levels of symbol replacement.

3https://github.com/gatagat/lap

https://github.com/gatagat/lap
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Symbol Replacement Level

Conservation Partial Full Transposition

Encoder-Decoder MRR Acc MRR Acc MRR Acc MRR Acc

NPT-Local-Local 63.22 56.08 47.19 39.24 40.36 32.52 56.17 48.30

NPT-Local-Global - 61.89 - 42.55 - 35.43 - 53.49

NPT-Global-Global - 62.14 - 43.68 - 35.85 - 55.28

SCRATCHBERT-Local-Local 73.73 67.12 64.79 57.20 60.67 52.54 73.17 66.51

SCRATCHBERT-Local-Global - 74.68 - 62.80 - 57.69 - 74.03
SCRATCHBERT-Global-Global - 71.38 - 58.06 - 52.31 - 70.32

MATHBERT-Local-Local 54.51 46.45 44.31 36.10 38.91 30.62 52.57 44.52

MATHBERT-Local-Global - 49.77 - 37.92 - 32.03 - 47.43

MATHBERT-Global-Global - 45.38 - 33.64 - 28.47 - 43.41

Table 7.1: The MRR and accuracy scores for different combinations of encoders, de-

coders, and symbol replacement levels. All the models are trained and tested on the

same replacement level. Best result in each column is bolded. Following the model

name, we include its encoder and decoder type (both being either Local or Global).

Encoders While MATHBERT is pre-trained on millions of examples curated from

mathematical contents, it performs worse than the less complex NPT encoder, which

is trained solely on the downstream task across all symbol replacement levels and

decoders.4 SCRATCHBERT, which shares MATHBERT architecture and NPT cus-

tomized vocabulary, is outperforming both consistently. These results demonstrate the

vocabulary importance for learning from mathematical texts.

Symbol Replacement Levels Difficulty We obtain the best scores across all of our

models is the Conservation level, as the models can match identical symbol names

across theorem-proof pairs. The models achieve similar performance with Transposi-

tion replacement. These results suggest that the symbols’ order, context, and function

within the mathematical text do not play a significant role when the theorem and proof

share the same symbols’ names. In contrast, when the symbol names are changed

(Partial and Full replacements), we observe a sharp decline in results.

Training and Decoding Effects In all settings, global decoding substantially im-

proves accuracy and MRR. These improvements are more noticeable for the top two

encoders, NPT and SCRATCHBERT. For NPT, we observe better performance when

4We observe similar trends when fine-tuning the out-of-the-box BERT model on the matching task.
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using global training, but not for SCRATCHBERT and MATHBERT. Due to the lack

of computational resources, we can not reach the global training full potential when

using highly expressive encoders such as SCRATCHBERT and MATHBERT, which

share BERT-base architecture (see Section 8.2 for more details).

7.2.2 Effect of Input Type Analysis

To better understand the importance of each input type, we examine SCRATCHBERT-

Local-Local and NPT-Local-Local performance when fed with text, mathematical for-

mulae, or both (Table 7.2). We test them on the Conservation and Full symbol re-

placement levels. The mathematical formulae input plays a more significant role

for both models than the textual input. When trained and tested on the Conserva-

tion replacement level, NPT-Local-Local makes better use of the mathematical formu-

lae input than the more expressive, pre-trained SCRATCHBERT-Local-Local. When

trained and tested on with Full replacement, where the models cannot rely on simple

token-matching, NPT-Local-Local suffers from a sharper performance decline than

SCRATCHBERT-Local-Local when fed with mathematical formulae input. These re-

sults suggest that when applied to the Conservation data, a less expressive model can

get high results by harnessing simple token matching. SCRATCHBERT-Local-Local

performs better for both replacement levels when fed with text and complete input.

Symbol Replacement

Conservation Full

Input MRR Acc MRR Acc

NPT

Text 22.51 16.68 22.51 16.68

Math 65.08 58.47 34.55 27.30

Both 63.22 56.08 40.36 32.52

SCRATCHBERT

Text 36.85 29.18 36.85 29.18

Math 63.10 55.92 41.64 34.01

Both 73.73 67.12 60.67 52.54

Table 7.2: SCRATCHBERT-Local-Local and NPT-Local-Local performance for different

input types. Both stands for the original and complete input.
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7.2.3 Cross Replacement Setup

We examine the effect of testing a model on a different symbol replacement level from

the one it was trained on (Table 7.3). We use the SCRATCHBERT-Local-Local model

for all of our experiments. We observed a sharp decline in results when SCRATCH-

BERT-Local-Local is trained on the Conservation replacement level and tested on

Partial or Full. These drops in performance suggest the model developed a strong de-

pendency on exact symbol names matching. In addition, the replacement shift from

Conservation to Transposition and vice versa resulted in a minor performance drop.

These results provide additional evidence for the lack of importance of mathematical

functionality, order, and context of symbols’ names shared across theorem and proof

pairs.

The model trained on the Partial symbol replacement level demonstrated a signif-

icant resilience when tested with other symbol replacement levels. It outperforms the

rest of the models when applied to out-of-domain replacement levels and the Conser-

vation replacement level in-domain model.

PPPPPPPPPPPP
Source

Target
Symbol Replacement

Conservation Partial Full Transposition

MRR Acc MRR Acc MRR Acc MRR Acc

Conservation 73.73 67.12 43.87 36.36 29.74 25.36 69.56 62.23

Partial 74.21 67.96 64.79 57.20 53.77 45.40 72.13 65.42

Full 65.26 57.63 63.01 55.13 60.67 52.54 64.59 56.92

Transposition 73.78 67.40 43.67 36.02 29.76 25.47 73.17 66.51

Table 7.3: Cross-replacement levels performance for the SCRATCHBERT-Local-Local

model.

7.3 Qualitative analysis: LIME

Deep learning models have shown their advantages due to their higher complexity.

However, machine learning models are black boxes in most cases. People have no

insight of what is happening behind a model but are asked to trust the results. Al-

though the accuracy on cross validation can somehow validate the ability of the model,

real-world data sometimes can be significantly different, which makes the evaluation

metric not indicative of the product’s goal (Ribeiro et al., 2016). Therefore, it is sig-
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nificant to explore the explanations behind the predictions provided by the models, as

a worthwhile solution in addition to such metrics. Ribeiro et al. (2016) proposed the

Local Interpretable Model-Agnostic Explanations (LIME), a novel explanation tech-

nique which can interpret the predictions of any classifier. The name of the technique

reflects what we desire in the explanations:

Local Local refers to local fidelity. It is hard to guarantee that an explanation is

completely faithful unless it is exactly the description of the model. Therefore, we

expect the explanation to at least reflect the behaviour of the classifier on the instances

being predicted, which is called “locally faithful”. The author admitted that carrying

out a globally faithful explanations still remains a challenge.

Interpretability The representations in modern machine learning models such as

word embeddings are not intuitive to humans. LIME trys to explain the models on

the interpretable level such as text so that humans can understand.

Model-agnostic To make it be able to apply on all the models, LIME does not go

deeply into the model. Instead, LIME tweaks the feature values and observes the

influence on the output brought by the modifications. For example, if an input sentence

is “Math is so interesting”, LIME will perturb the input and get new predictions on the

modified sentences such as “Math so interesting”, “Math so interesting”, “Math so”,

etc. If the sentence is encoded as a sequence of word embeddings, LIME can also

perturb the word embeddings to get the same effect.

To study which tokens affect our model predictions, we use LIME to examine

SCRATCHBERT-Local-Local trained with the Conservation setup, and with Full re-

placement. Both are applied to original test examples. We observe that the Con-

servation SCRATCHBERT-Local-Local model heavily relies on the mathematical to-

kens and barely benefits from the text ones. In contrast, the SCRATCHBERT-Local-

Local model that was trained in the full symbol replacement setup strongly relies

on textual tokens with mathematical meaning, such as “module”, “supplement”, and

“semistable”, to name a few. A visualization is given in Figure 7.1.
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Lemma 3.2. Let M be a module and

H a local submodule of M . Then

H is a supplement of each proper

submodule K ≤ M with H + K =

M .

Proof. Since K is a proper submodule

of M and K + H = M , we have

K ∩ H is a proper submodule of H .

Therefore K ∩ H ≪ H , since H is

local. That is , H is a supplement

of K in M .

(https://arxiv.org/pdf/0810.

0041.pdf)

(a) Example statement/proof 1 - Symbol con-

servation

Lemma 3.2. Let M be a module and H

a local submodule of M. Then H is a

supplement of each proper submodule

K ≤ M with H +K = M.

Proof. Since K is a proper submodule

of M and K + H = M, we have

K ∩ H is a proper submodule of H.

Therefore K ∩ H ≪ H, since H is

local . That is , H is a supplement

of K in M.

(https://arxiv.org/pdf/0810.

0041.pdf)

(b) Example statement/proof 1 - Full symbol

replacement

Lemma 4.1.9. If F is a µ -

semistable X -twisted sheaf of rank r

then dim Hom ( F , F ) ≤ r2.

Proof. Any endomorphism of F must

preserve the socle (see Lemma 1.5.5ff

of [4]); moreover, the quotient F /

Soc( F ) is also semistable . The result

follows by induction from the polystable

case, which itself follows immediately

from the fact that stable sheaves are

simple.

(https://arxiv.org/pdf/0803.

3332.pdf)

(c) Example statement/proof 2 - Symbol con-

servation

Lemma 4 .1.9. If F is a µ- semistable

X-twisted sheaf of rank r then dim

Hom ( F , F ) ≤ r 2.

Proof. Any endomorphism of F must

preserve the socle (see Lemma 1.5.5ff

of [ 4 ]); moreover, the quotient F /

Soc(F) is also semistable . The result

follows by induction from the polystable

case, which itself follows immediately

from the fact that stable sheaves are

simple.

(https://arxiv.org/pdf/0803.

3332.pdf)

(d) Example statement/proof 2 - Full symbol

replacement

Figure 7.1: LIME visualizations for the model that was trained in the symbol conser-

vation setup (a and c) and their corresponding LIME visualizations for the model that

was trained in the full symbol replacement setup (b and d). The LIME “match” class

supporting features are colored in orange, and the “mismatch” is in blue. The darker

the color, the higher (in absolute value) the feature importance.

https://arxiv.org/pdf/0810.0041.pdf
https://arxiv.org/pdf/0810.0041.pdf
https://arxiv.org/pdf/0810.0041.pdf
https://arxiv.org/pdf/0810.0041.pdf
https://arxiv.org/pdf/0803.3332.pdf
https://arxiv.org/pdf/0803.3332.pdf
https://arxiv.org/pdf/0803.3332.pdf
https://arxiv.org/pdf/0803.3332.pdf


Chapter 8

Conclusions and Future Work

This Chapter gives a summary of our findings in Section 8.1. Section 8.2 and Sec-

tion 8.3 introduce the limitations we have observed in our work and the potential di-

rections to continue on this research topic.

8.1 Conclusion

We developed a bilinear similarity model and a large dataset (MATcH) for a task fo-

cusing on the domain of mathematical research articles. The task consists in matching

a proof to a mathematical statement. We proposed two ways to train and do inference

with our model and dataset: local matching and global matching. We assessed the

difficulty of the task with several pre-trained encoders, demonstrating the importance

of the vocabulary support for these models. Further assessment relies on the use of a

symbol replacement procedure, which helps test the type of mathematical reasoning

the encoders can perform. While our model performs well on this task, we observe

through the symbol replacement procedure that the model makes a relatively shallow

use of the text and formulae to obtain this performance. Our experiments show that

both mathematical formulae and the text surrounding them is an important source for

making accurate predictions. Finally, we have introduced a global neural model for

addressing the structured prediction problem of maximum weighted bipartite match-

ing. The model is based on a self-attentive encoder and a bilinear similarity function.

Our experiments show that bag-of-words baselines are insufficient to solve the task,

and are outperformed by our proposed model by a wide margin. We found that decod-

ing is crucial to achieve high results, and is further enhanced by a global training loss.

Finally, our results show that mathematical formulae are the most informative source
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of information for the task but are best taken into account with the self-attentive neural

model.

8.2 Limitations

Our work has two main limitations. First, we aim to simulate a setup where the same

author did not write both a theorem and its corresponding proof. We reduce the sym-

bols’ names intersection between the statement and the proof, which leads to more

challenging setups. In real-world scenarios, authors differ not only in their notation

choices but also in their writing styles. In contrast to notations, writing styles can not

be altered using simple rule-based methods. Therefore, additional effort is needed to

obtain a truly real-world setup for mathematical information retrieval. Second, due to

computational limitations, we can not reach the full potential of our global training

method. More precisely, our GPUs can not facilitate large batch sizes for large models

such as MATHBERT and SCRATCHBERT. We use NVIDIA v100 GPUs that allow us

to experiment with a batch size of 16 for MATHBERT and SCRATCHBERT, compared

to 60 with NPT.

In addition, while our symbol replacement method provides a coarse way to test

the language model use of the symbols and text in mathematical articles, it presents

cases in which the replacement is not precise. These cases arise because the use of

symbols in mathematical language is rich and context-dependent (for example, while

π often refers to the constant pie, it might also refer to a tuple-projection function).

8.3 Future Work

Successfully applying natural language processing (NLP) methods to mathematical

texts is a highly challenging task due to their unique jargon, notations, and complex

nature. We have shown that the pretrained language models rely much on the over-

lapping mathematical symbols instead of focusing on the semantic information behind

the mathematical text.

There are two types of experiments to further test with. Firstly, it is worthwhile

to carry out experiments on other existing statement-proof matching datasets such as

NaturalProof (Welleck et al., 2021), for validating the naive matching pattern of PLMs.

As we mentioned before, the current global training results of the SCRATCHBERT

model can only use a batch size with 16 due to the limitation of computing resources
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and it does not show the advantage of global training with such a small batch size. We

can further use global training with batch size of 60 to validate the power of our global

method.

The future improvement is three-fold. Since the statement-proof pairs are extracted

from professional mathematical papers, we notice that pairs that come from the same

paper have strong references. In the example we show in Figure 1.4, the proof refers

to “Theorem 1.1”. Such references contain no meaning when separated out from the

context. Therefore, we can consider either further filtering our dataset or trying to

ease the problem from the model level. Secondly, some mathematical symbols contain

special meanings and people have some preferences while choosing the symbols. For

example, E sometimes stands for “energy” in physics. i and j are more likely to be

used as subscript to represent the index. Some mathematical symbols can even rep-

resent constants in a specific domain. For example, g usually stands for the gravity

constants in physical math. We can consider more complicated rules while doing the

symbol replacement or even set several “unchanged list” for each domain to store the

symbols that are not going to be replaced in that specific area. One more possible im-

provement is applying the contrastive learning (CL) technique. Contrastive learning

was proposed to learn effective representation by making the similar data points closer

and pushing apart the non-neighbours (Hadsell et al., 2006). Chen et al. (2020) built

a self-supervised contrastive learning framework called SimCLR to learn the visual

representations. Later, Gao et al. (2021) aggregated the framework to learn sentence

embeddings. They used their SimCSE framework to further train the BERTbase model

and achieved substantial improvements on several semantic textual similarity bench-

marks. In contrastive learning, the strategy to generate positive and negative samples

is the crucial part (Arora et al., 2019). In our case, we already have the symbol re-

placement method which has no harmness to the semantic information. Therefore, it

can act as an ideal sampling technique in contrastive learning. Furthermore, we can let

the model learn the differences among the multiple domains we have in the dataset and

also manipulate hard-negative proofs that share the same mathematical symbols as the

statement. If the model achieves better performance after training on these setups, it

means contrastive learning can successfully enhance the PLMs’ ability to encode the

semantic information in mathematical text.

Finally, some researchers have pointed out that BERT showed its weakness on en-

coding the numeracy in the text (Wallace et al., 2019) and sequential order of words

was not significant in natural language understanding tasks (Pham et al., 2021). Adapt-
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ing PLMs to mathematical domain remains challenges since number and symbols’ or-

der matter a lot in the formulae and a tiny modification can completely change the

meaning. Specifically, for our task, the ignorance of value and tokens order might also

be one of the reasons for resulting in naive symbol matching we showed in the previous

experiments. There are a lot of things to explore regarding mathematical language un-

derstanding. By introducing our work, we hope it can inspire more researchers to work

on this field and explore further on applying natural language processing techniques to

mathematical domain.



Appendix A

Complete Result Tables

Table A.1, Table A.2 and Table A.3 show the complete results of all the experiments

we have run.

Encoder Method Mode Replacement Conservation test mrr Conservation test acc Partial test mrr Partial test acc Transposition test mrr Transposition test acc Full test mrr Full test acc

NPT local+local both conservation 63.22 56.08 33.74 27.35 40.48 33.58 23.23 19.81

NPT local+local text conservation 22.51 16.68 - - - - - -

NPT local+local math conservation 65.08 58.47 33.05 27.23 40.55 34.19 23.15 20.26

NPT local+local both partial 61.37 54.12 47.19 39.24 47.06 39.34 34.59 27.69

NPT local+local math partial 59.85 52.95 43.77 36.14 43.81 36.61 31.19 25.09

NPT local+local both transposition 60.25 52.82 34.56 27.58 56.17 48.30 24.04 19.81

NPT local+local math transposition 61.51 54.62 33.77 27.50 57.03 49.34 23.28 19.80

NPT local+local both full 47.87 40.13 43.69 35.86 43.78 35.94 40.36 32.52

NPT local+local math full 45.29 37.81 39.08 31.71 38.47 30.96 34.55 27.30

MathBERT local+local both conservation 54.51 46.45 25.44 19.87 49.76 41.41 19.56 16.32

MathBERT local+local text conservation 22.60 16.09 - - - - - -

MathBERT local+local math conservation 51.33 43.52 22.73 17.82 47.76 39.77 17.95 14.99

MathBERT local+local both partial 55.79 48.03 44.31 36.10 53.64 45.69 34.52 26.89

MathBERT local+local math partial 49.93 42.62 34.80 27.50 47.48 39.84 25.40 19.64

MathBERT local+local both transposition 54.46 46.42 26.30 20.49 52.57 44.52 19.76 16.25

MathBERT local+local math transposition 51.90 44.14 22.98 17.88 50.06 42.13 18.12 15.06

MathBERT local+local both full 42.36 34.02 40.56 32.25 41.94 33.70 38.91 30.62

MathBERT local+local math full 34.28 27.10 30.89 24.09 33.66 26.62 27.98 21.20

ScratchBERT local+local both conservation 73.73 67.12 43.87 36.36 69.56 62.23 29.74 25.36

ScratchBERT local+local text conservation 36.85 29.18 - - - - - -

ScratchBERT local+local math conservation 63.10 55.92 32.60 26.09 59.15 51.42 23.05 19.57

ScratchBERT local+local both partial 74.21 67.96 64.79 57.20 72.13 65.42 53.77 45.40

ScratchBERT local+local math partial 61.71 54.70 47.85 40.07 58.43 51.09 36.23 29.41

ScratchBERT local+local both transposition 73.78 67.40 43.67 36.02 73.17 66.51 29.76 25.47

ScratchBERT local+local math transposition 63.39 56.42 32.65 26.43 62.46 55.13 23.42 20.05

ScratchBERT local+local both full 65.26 57.63 63.01 55.13 64.59 56.92 60.67 52.54

ScratchBERT local+local math full 49.50 42.13 44.99 37.41 47.52 40.05 41.64 34.01

Table A.1: Complete result table using local training and local decoding.
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Encoder Method Mode Replacement Conservation test acc Partial test acc Transposition test acc Full test acc

NPT local+global both conservation 61.89 29.30 36.14 19.88

NPT local+global text conservation 17.67 - - -

NPT local+global math conservation 64.11 28.16 36.21 20.01

NPT local+global both partial 59.38 42.55 42.81 29.66

NPT local+global math partial 58.13 39.52 39.86 26.93

NPT local+global both transposition 58.52 30.07 53.49 20.11

NPT local+global math transposition 59.58 29.26 54.86 19.95

NPT local+global both full 43.86 39.24 39.45 35.43

NPT local+global math full 41.88 34.63 34.27 30.25

MathBERT local+global both conservation 49.77 19.94 44.70 15.46

MathBERT local+global text conservation 15.90 - - -

MathBERT local+global math conservation 47.09 17.92 42.60 14.25

MathBERT local+global both partial 51.06 37.92 48.61 28.14

MathBERT local+global math partial 44.78 28.18 41.79 19.91

MathBERT local+global both transposition 49.77 20.28 47.43 15.42

MathBERT local+global math transposition 47.35 18.29 45.59 14.43

MathBERT local+global both full 35.83 33.74 35.54 32.03

MathBERT local+global math full 28.35 24.65 27.89 21.82

ScratchBERT local+global both conservation 74.68 40.60 70.46 26.91

ScratchBERT local+global text conservation 31.25 - - -

ScratchBERT local+global math conservation 60.93 29.05 57.28 20.22

ScratchBERT local+global both partial 74.49 62.80 72.00 50.45

ScratchBERT local+global math partial 59.37 43.52 55.56 31.10

ScratchBERT local+global both transposition 74.23 40.35 74.03 26.38

ScratchBERT local+global math transposition 60.84 28.78 60.39 20.43

ScratchBERT local+global both full 63.22 60.37 62.14 57.69

ScratchBERT local+global math full 46.03 40.93 43.70 36.81

Table A.2: Complete result table using local training and global decoding.

Encoder Method Mode Replacement Conservation test acc Partial test acc Transposition test acc Full test acc

NPT global+global both conservation 62.14 29.69 36.83 20.32

NPT global+global text conservation 18.28 - - -

NPT global+global math conservation 65.23 29.88 37.47 20.45

NPT global+global both partial 60.88 43.68 44.30 30.52

NPT global+global math partial 60.91 41.66 41.73 27.58

NPT global+global both transposition 60.10 31.78 55.28 21.13

NPT global+global math transposition 60.24 28.91 55.02 20.06

NPT global+global both full 45.83 40.53 40.10 35.85

NPT global+global math full 42.52 35.68 34.98 30.36

MathBERT global+global both conservation 45.38 17.82 39.84 14.12

MathBERT global+global text conservation 15.96 - - -

MathBERT global+global math conservation 44.13 16.17 39.59 13.15

MathBERT global+global both partial 46.22 33.64 43.22 24.77

MathBERT global+global math partial 42.61 27.22 40.03 18.93

MathBERT global+global both adversarial 46.05 18.11 43.41 14.22

MathBERT global+global math adversarial 42.75 16.12 40.28 13.27

MathBERT global+global both full 32.05 30.11 31.61 28.47

MathBERT global+global math full 27.12 23.36 26.29 20.88

ScratchBERT global+global both conservation 71.38 36.55 66.94 24.67

ScratchBERT global+global text conservation 30.86 - - -

ScratchBERT global+global math conservation 60.26 27.34 55.81 19.36

ScratchBERT global+global both partial 70.87 58.06 67.54 45.15

ScratchBERT global+global math partial 58.23 41.31 54.41 29.75

ScratchBERT global+global both transposition 71.41 36.32 70.32 24.79

ScratchBERT global+global math transposition 59.68 27.06 58.62 19.57

ScratchBERT global+global both full 57.73 54.99 56.74 52.31

ScratchBERT global+global math full 43.34 38.17 41.06 34.72

Table A.3: Complete result table using global training and global decoding.



Bibliography

Aggarwal, J. (2017). Power series.

Aizawa, A. and Kohlhase, M. (2021). Mathematical Information Retrieval. In Sakai,

T., Oard, D. W., and Kando, N., editors, Evaluating Information Retrieval and Ac-

cess Tasks: NTCIR’s Legacy of Research Impact, pages 169–185. Springer Singa-

pore, Singapore.

Aizawa, A., Kohlhase, M., and Ounis, I. (2013). Ntcir-10 math pilot task overview. In

NTCIR.

Aizawa, A., Kohlhase, M., Ounis, I., and Schubotz, M. (2014). Ntcir-11 math-2 task

overview.

Alsentzer, E., Murphy, J., Boag, W., Weng, W.-H., Jindi, D., Naumann, T., and McDer-

mott, M. (2019). Publicly available clinical BERT embeddings. In Proceedings of

the 2nd Clinical Natural Language Processing Workshop, pages 72–78, Minneapo-

lis, Minnesota, USA. Association for Computational Linguistics.

Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language

models.

Arora, S., Khandeparkar, H., Khodak, M., Plevrakis, O., and Saunshi, N. (2019).

A theoretical analysis of contrastive unsupervised representation learning. CoRR,

abs/1902.09229.

Ausbrooks, R., Buswell, S., Carlisle, D., Chavchanidze, G., Dalmas, S., Devitt, S.,

Diaz, A., Dooley, S., Hunter, R., Ion, P., Kohlhase, M., Lazrek, A., Libbrecht, P.,

Miller, B., Miner, R., Sargent, M., Smith, B., Soiffer, N., Sutor, R., and Watt, S.

(2010). Mathematical markup language (mathml) version 3.0. World Wide Web -

WWW.

50



Bibliography 51

Baeza-Yates, R. A. and Ribeiro-Neto, B. A. (1999). Modern Information Retrieval.

ACM Press / Addison-Wesley.

Bahdanau, D., Cho, K., and Bengio, Y. (2016). Neural machine translation by jointly

learning to align and translate.

Beltagy, I., Lo, K., and Cohan, A. (2019). SciBERT: A pretrained language model

for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 3615–3620, Hong Kong, China.

Association for Computational Linguistics.

BERNAL, J. D., CHADWICK, D., HOLMSTROM, J. E., and FOX, H. M. (1948).

The Royal Society Scientific Information Conference. Nature, 162(4112):279–286.

Bourne, C. P. and Hahn, T. B. (2003). Lockheed DIALOG and Related Systems,

1961–1972, pages 141–183.

Bush, V. (1945). As We May Think. Atlantic Monthly, 176(1):641–649.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for

contrastive learning of visual representations. In III, H. D. and Singh, A., editors,

Proceedings of the 37th International Conference on Machine Learning, volume

119 of Proceedings of Machine Learning Research, pages 1597–1607. PMLR.
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